3.25.66 \(\int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx\) [2466]

Optimal. Leaf size=248 \[ -\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}} \]

[Out]

-2*e*(c*x^2+b*x+a)^(1/2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^(1/2)+EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c
+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b
^2)^(1/2)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/(a*e^2-b*d*e+c*d^2)/(c*x^2+b*x+a)^(1/2)/(c*(e*x+
d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {758, 21, 732, 435} \begin {gather*} \frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\text {ArcSin}\left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 e \sqrt {a+b x+c x^2}}{\sqrt {d+e x} \left (a e^2-b d e+c d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-2*e*Sqrt[a + b*x + c*x^2])/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[d + e*x
]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2
- 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/((c*d^2 - b*d*e + a*e^2)*Sq
rt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 758

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
 /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx &=-\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}-\frac {2 \int \frac {-\frac {c d}{2}-\frac {c e x}{2}}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {c \int \frac {\sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\left (\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {a+b x+c x^2}}\\ &=-\frac {2 e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x}}+\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.55, size = 408, normalized size = 1.65 \begin {gather*} \frac {-\frac {4 e^2 (a+x (b+c x))}{\sqrt {d+e x}}+\frac {i \sqrt {2} \left (2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e\right ) \sqrt {\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {1-\frac {2 c (d+e x)}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}} \left (E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right )|\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )-F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right )|\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )\right )}{\sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}}}{2 e \left (c d^2+e (-b d+a e)\right ) \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

((-4*e^2*(a + x*(b + c*x)))/Sqrt[d + e*x] + (I*Sqrt[2]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*Sqrt[(e*(b + Sqrt[
b^2 - 4*a*c] + 2*c*x))/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d + (-b + Sqrt[b^2
- 4*a*c])*e)]*(EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d
 - (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)] - EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c
*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 -
 4*a*c])*e)]))/Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)])/(2*e*(c*d^2 + e*(-(b*d) + a*e))*Sqrt[a + x*(b + c
*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1364\) vs. \(2(220)=440\).
time = 0.84, size = 1365, normalized size = 5.50 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(
-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^
(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*
a*c+b^2)^(1/2)))^(1/2))*a*e^2-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b
^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e
-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b
*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*d*e+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))
^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*
e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2
),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d^2-2^(1/2)*(-(e*x+d)*c/(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b
+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+
b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*e^2
+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4
*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1
/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*
c+b^2)^(1/2)))^(1/2))*b*d*e-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2
)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2
*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e
-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d^2-x^2*c*e^2-b*e^2*x-e^2*a)*(c*x^2+b*x+a)^(1/2)*(e*x+d)^(1
/2)/e/(a*e^2-b*d*e+c*d^2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.77, size = 446, normalized size = 1.80 \begin {gather*} \frac {2 \, {\left ({\left (2 \, c d^{2} - b x e^{2} + {\left (2 \, c d x - b d\right )} e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right ) - 3 \, {\left (c x e^{2} + c d e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right ) - 3 \, \sqrt {c x^{2} + b x + a} \sqrt {x e + d} c e^{2}\right )}}{3 \, {\left (c^{2} d^{3} e + a c x e^{4} - {\left (b c d x - a c d\right )} e^{3} + {\left (c^{2} d^{2} x - b c d^{2}\right )} e^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2/3*((2*c*d^2 - b*x*e^2 + (2*c*d*x - b*d)*e)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2
 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^
3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c) - 3*(c*x*e^2 + c*d*e)*sqrt(c)*e^(1/2)*weierstrassZeta(4/3*(
c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^
2 + (2*b^3 - 9*a*b*c)*e^3)*e^(-3)/c^3, weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)*e^(-2)/
c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)*e^(-3)/c^3, 1/3*(c*
d + (3*c*x + b)*e)*e^(-1)/c)) - 3*sqrt(c*x^2 + b*x + a)*sqrt(x*e + d)*c*e^2)/(c^2*d^3*e + a*c*x*e^4 - (b*c*d*x
 - a*c*d)*e^3 + (c^2*d^2*x - b*c*d^2)*e^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (d + e x\right )^{\frac {3}{2}} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d + e*x)**(3/2)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (d+e\,x\right )}^{3/2}\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________